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Two identical circular cylinders are submerged to the same depth in tandem in a
stream. There are separation distances between the cylinder centres such that the
combination makes no downstream waves, and hence is subject to zero net wave
drag. In general there is then a non-zero equal and opposite horizontal force on each
cylinder. However, there are special depths of submergence such that this interaction
force between the cylinders also vanishes, and hence each cylinder is separately free
of horizontal force. The parameter range for this phenomenon is explored both
by linear theory for cylinders of small radius, and by a fully nonlinear computer
program. For example, a configuration with a separation distance of approximately
one half-wavelength gives zero force on each cylinder when the depth of submergence
is approximately three-quarters of the separation distance.

1. Introduction
If two similar bluff bodies are placed in a stream U in close tandem, there are

grounds for anticipating a repulsive force of interaction between the bodies. That is,
the trailing body exerts a thrust on the leading body. For example, if the trailing
body were alone, it would have a stagnation zone ahead of it and hence a positive
pressure gradient in the streamwise direction. If one then placed another body in that
zone, one would expect this pressure gradient to push the new body forward. In any
case, the combination may be expected to yield a relatively low velocity in the space
between them, and hence a higher pressure there than that acting on the front of
the leader. The resulting pressure difference would create a net forward force on the
leader. This ‘induced-buoyancy’ force allows dolphins to coast freely immediately in
front of the bow of fast-moving ships, and has nothing to do with wave generation,
gravity g, or the presence of a free surface (Newman 1975).

On the other hand, dolphins (and humans!) can also surf on the free-surface waves
behind a ship. And baby ducks do seem to benefit from swimming in close formation
behind their mother. So it may also be possible for there to be a force of attraction
between two bodies in tandem near a free surface, and we shall show examples of
this for submerged cylinders. This is essentially a gravity-wave phenomenon, and it
is not hard to see that wave effects will tend to lead to a drag force on the leading
body, not a thrust. For example, in the limit of large (many wavelengths) separation,
the leader will not detect the presence of the trailer, and will then be subject to the
same wave resistance or positive drag as if it were alone.

For submerged bodies, each of these two distinct and opposite phenomena plays
a role, and the net effect on the leading body is the sum of local thrust and wave
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drag forces. Hence it is possible for these forces to cancel each other out, and for the
leading body to be subject to zero force. To achieve this, it is only necessary to adjust
the depth of submergence so that the wave drag, which is very strongly dependent
on depth, is equal and opposite to the local thrust, which is essentially the same for
all depths. This is in principle possible for any reasonably shaped pair of bodies at
any (not too small) separation distance, though most easily realizable for similar or
identical bodies. It holds both in two and three dimensions; for example, Xu (1996)
has shown that the leader of two tandem spheres can have zero (or negative) drag in
some circumstances.

In two-dimensional flow, if we combine two linear wavemakers with closely similar
properties, it is possible to use destructive interference between phase-shifted separate
wave patterns to cancel the combined far-downstream waves. For example, this can
be done by a combination of thickness and lifting effects for submerged airfoil-like
bodies (Tuck & Tulin 1992), and for a single circular cylinder with appropriately
chosen circulation (Scullen & Tuck 1995). Even more familiar examples occur for
single bodies or pressure distributions of finite extent (Lamb 1932, p. 404; Tuck
& Vanden-Broeck 1985), or finite-length bumps on the bottom of water of finite
depth (Forbes 1982), where cancellation occurs essentially via destructive interference
between out-of-phase bow and stern-generated waves.

In the present case of two separate bodies in tandem, such cancellation can occur
for appropriate separation distances, if the bodies are identical and at the same
depth of submergence. In that case, there will be zero net drag on the combination.
This is known to be an exact result in the linear case, and we shall show that
to the accuracy of our computations it also happens for nonlinear disturbances.
Thus according to linear water-wave theory with small-amplitude sinusoidal waves
of wavelength 2πU2/g (Newman 1977, p. 270), exact wave cancellation occurs when
the separation ` between identical wave-making bodies is an odd multiple of a
half-wavelength, namely ` = (2n + 1)πU2/g, n = 0, 1, 2, . . . . Linear theory is valid
for bodies that are sufficiently small or sufficiently deeply submerged. Otherwise the
waves made are nonlinear and non-sinusoidal, and there is no guarantee that exact
and complete cancellation can be expected, nor any prior information about the
discrete separations at which such cancellations might occur. Schwartz (1981) and
Forbes (1982) did however give strong numerical evidence for exact cancellation of
nonlinear waves made by pressure distributions and bottom bumps respectively, and
we present similar evidence here for tandem submerged cylinders.

It is in any case clear that depth of submergence tends to control the force
on the leading body, while separation between the bodies controls the net force
on the combination. It is therefore possible that by simultaneous adjustment of
both distances we may be able to eliminate both forces, and hence to achieve a
situation where each body is subject to zero force. We expect a discrete set of such
configurations, parametrized by an integer n as above. Given the shape and size of the
identical bodies, for each n = 0, 1, 2, . . . there will be a unique depth h and a unique
separation ` (each scaled with U2/g) for zero force. Hence the depth/separation ratio
h/` of the configuration is uniquely determined for each n. The n = 0 configuration
has the smallest (half-wavelength) separation, and hence the largest local thrust.
Hence it needs the largest wave for cancellation purposes, so has the least depth of
submergence.

As a specific example, let us specialize to a pair of identical submerged circular
cylinders of radius a, with their centres at the same depth h, but separated horizontally
by a distance `. Then linear theory applies when a is sufficiently small relative to all
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other length scales, and suggests that the zero-force configuration is independent of a.
The force on each cylinder is proportional to a4 in this linear theory, and a formula for
this force is derived here. Although this formula is somewhat complicated, involving
the complex exponential integral function, a simple far-field expansion appears to
be of adequate accuracy. The linear conclusion is that, with ` = (2n + 1)πU2/g as
discussed above, the zero-force configurations have h/` = 0.759, 0.422, 0.294, . . . for
n = 0, 1, 2, . . . .

The linear results are then confirmed by use of a computer program (Scullen &
Tuck 1995) which solves two-dimensional potential flows for submerged bodies of
any shape. The present problem of two submerged tandem circular cylinders is solved
to (in principle) arbitrary precision by this program, with the correct impermeability
boundary condition on both cylinders, and the full nonlinear free-surface conditions.
When that program is run at small a, say of the order of a tenth of U2/g, the
asymptotic small-a results are reproduced. The program then enables determination
of the effect of nonlinearity, by increasing a, and results are obtained in a range up
to a values comparable to U2/g, h and `.

The conclusion is that zero force on either cylinder demands larger submergences
and separations when nonlinearity is important. There is still a discrete set of con-
figurations yielding (to the accuracy of our computations) essentially zero force
simultaneously on both cylinders, the most important member (n = 0) of which still
has a depth of about three-quarters of the separation.

For every submergence yielding non-breaking waves, we can find separations such
that the configuration makes no waves far downstream, to within the accuracy of
our program. The corresponding flow is fore-aft symmetric, with a large trough
between the cylinders and small crests above them. If one compares configurations
with separations either just less than or just greater than a non-wavemaking value,
there is a clear change of phase in the wave produced far downstream. In general, for
such non-wavemaking configurations, there is an equal and opposite force on each of
the cylinders separately. However, for each cylinder radius, there is a discrete set of
submergences, as described above, for which this separate force vanishes.

For very large cylinders, if one further increases or decreases the separation from a
non-wavemaking value, the wave amplitude rises very steeply and the waves become
noticeably non-sinusoidal. For some sufficiently large cylinder radii, computation is
feasible using our present program only in a very narrow range of separations close
to the non-wavemaking value. Solutions with non-breaking waves may in fact only
exist in this narrow range for such large disturbances.

2. Linear theory
Consider the complex potential

f(z) = Uz +Ua2
[
G′(z) + G′(z − `)

]
, (1)

where G(z) is the potential for a source beneath a free surface, such that G(z)− log z
is analytic near z = 0; thus G′(z) is a dipole potential, behaving like 1/z for small z.
The equilibrium free surface is y = h, on which G satisfies the linearized free-surface
condition

Re[U2G′′(z) + igG′(z)] = 0. (2)

Specifically (Havelock 1926; Wehausen & Laitone 1960, p. 489; Tuck 1965)

G(z) = log z + F(2κh+ iκz), (3)
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where κ = g/U2 and

F(v) = log v − 2e−vEi−(v), (4)

with Ei− an exponential integral function (Jahnke & Emde 1945, p. 1).
The velocity potential (1) thus describes a flow about a pair of submerged dipoles,

separated by a distance `. It is not the exact solution for flow over any actual body
or combination of bodies; indeed (Tuck 1965) it is unlikely even to generate exactly
any closed stream surface. However, the flow near z = 0 is dominated by the local
dipole, and thus

f(z) ≈ Uz +Ua2/z + constant, (5)

which is the exact solution for flow over a circular cylinder of radius a at the origin.
Similarly, if we consider small values of z − `, we see that the flow approaches that
for a circle of radius a at that point. Hence for sufficiently small a the potential above
approximates that for flow over a pair of circles of radius a separated by a distance
` and submerged to a depth h.

In order to compute the force on the leading circle at z = 0, we must continue the
expansion begun by (5) to several more terms, and in particular find the coefficient
of 1/z in the Laurent series of the squared velocity f′(z)2, namely

f′(z)2 =

∞∑
j=−4

Cjz
j , (6)

where

C−1 = −2U2a4
[
(iκ)3F ′′′(2H) + G′′′(−L)

]
, (7)

with L = κ` and H = κh. Then Blasius formula (Milne-Thomson 1968, p. 168)

X − iY = 1
2
iρ

∫
[f′(z)2]dz = −πρC−1 (8)

gives the drag X and lift Y on the body. In particular, the drag D = X on the leading
circle is

D = −πρReC−1 (9)

= 2πρU2a4Re
[
(iκ)3F ′′′(2H) + G′′′(−L)

]
(10)

= 4π2ρU2a4κ3e−2H + 2πρU2a4ReG′′′(−L). (11)

It is convenient to define a drag coefficient

CD =
D

4πρU2a4κ3
(12)

for which we have found finally the linearized result

CD = πe−2H − L−3 + Im
[
e−vEi−(v)− v−1 − v−2 − v−3

]
, (13)

where v = 2H − iL.
In order to evaluate this force, it is in general necessary to compute values of the

exponential integral Ei−(v) with complex argument v, which can be done reasonably
efficiently for moderate values of the argument v by summing its Taylor series (Jahnke
& Emde 1945, p. 2). However, for the relatively large H,L values of prime interest
here, a large-v asymptotic expansion is often sufficient, in which only the two leading
terms of (13) need be retained, namely

CD = πe−2H − L−3. (14)
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The physical interpretation of this formula is as follows. The first term is just the
wave resistance of the leading circle in the absence of the trailing circle, and thus
is independent of the separation L. The second term is the main local thrust from
the interaction between the two circles. Note that this term is independent of H , and
indeed can be found by ignoring the free surface, and just combining a stream with
two simple dipoles in an infinite fluid. This simple approximate formula thus captures
the drag and thrust force components due to far-field waves and local overpressures
respectively. The only change if one reverts to the full linear formula (13) is to give a
slightly more accurate estimate of the local thrust term.

The force on the trailing body can be found similarly. In fact it follows simply by
replacing L by −L in (13). This is a physically significant change, since then there
are non-local (wave) effects from G′′′(L) representing the fact that the trailing body
lies in the wave wake of the leading body, and the far-field approximation is not the
same as would follow simply by replacing L by −L in (14). Specifically, the large-v
expansion for the drag on the trailing body then becomes

CD = πe−2H (1 + 2 cosL) + L−3. (15)

For large L this oscillates between a drag of three times the wave drag of a single
circle and a thrust equal and opposite to that drag.

The total drag on the combination is the sum of the above forces on the two circles,
namely (as an exact linear result, without any far-field approximation)

CD = 2πe−2H (1 + cosL) (16)

which vanishes when L is an odd multiple of π, as expected.
According to the approximate formula (14), the force on the leading cylinder

vanishes when

H = 1
2

log
[
πL3

]
(17)

and a corresponding graph of H versus L is shown as the chain-dotted curve in
figure 1, labelled ‘A = 0 (approx.)’. On the other hand, if we set CD = 0 in the full linear
formula (13), and for each value of L use Newton iteration to find the corresponding
value ofH , this gives the dashed curve labelled ‘A = 0 (exact)’ of figure 1, the difference
from the chain-dotted curve being only a few percent in the range shown. In particular,
for the lowest-order wave-cancelling separation L = π, the approximate formula gives
H = log π2 = 2.289 whereas the full linear result has H = 2.385, the latter correspond-
ing to a configuration aspect ratio of h/` = 0.7592. The second wave-cancellation
mode L = 3π is such that the far-field approximation H = 3.937 is even closer to the
full linear result H = 3.974 (h/` = 0.4216), and as we move to higher modes, the sepa-
rations and depths increase further. In practice the main interest is in the lowest mode.

3. Exact computations
A program has recently been developed (Scullen & Tuck 1995) that enables solution

of potential flows about submerged bodies of any shape, even at submergences such
that the waves made are highly nonlinear. The (known) body surface and (unknown)
free surface are each represented by a collection of discrete points, while discrete
sources located outside the flow domain (inside the body or above the free surface)
are used to generate the velocity potential for the flow, with strengths to be determined.
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Figure 1. Relationship between non-dimensional depth H and separation L yielding zero horizontal
force on the leading cylinder, for various non-dimensional radii A. The chain-dotted curve is a
far-field approximation (17) to the linear (A = 0) theory, for which the exact results are shown as
the dashed curve.

For each choice of the number n of specified boundary points (and hence of
unknowns to be solved for), all boundary conditions are satisfied at these collocation
points to as fine an accuracy as desired. The iteration scheme, in which approximations
to the free surface and its associated velocity potential are successively refined at a
fixed value of n, has been carefully designed so that a quadratic rate of convergence
is achieved at the collocation points. Once such convergence has been achieved, the
residual error, e.g. at points intermediate between collocation points and in the force
computations, then depends on the value of n, and we have found that approximately
6-figure accuracy is achieved for n values of the order of 1000.

The benefit of using singularities external to the fluid domain, as opposed to
locations on its boundary, is that a smoother representation of the potential can be
achieved along the boundaries, which in turn leads to a more accurate solution for a
given n. Discrete rather than distributed sources prove to be suitable for representing
bodies without sharp corners, and have the additional benefit that derivatives up to
third order (which are required by the method) are simple to evaluate. The body
forces are determined by application of the Lagally theorem (Milne-Thomson 1968)
which relies solely upon knowledge of the locations of the sources and their strengths,
and avoids the need for numerical integration of pressure over the surface of the body.

The program has previously been applied to (single) submerged circular cylinders
both with and without circulation (Scullen & Tuck 1995) and to submerged spheroids
in three dimensions (Scullen 1996).

The present extension to two submerged tandem cylinders presents no additional
difficulties. For a given choice of non-dimensionalized cylinder radius A = κa and
separation L, results are first obtained for the drag on the first cylinder as a function
of depth H . When the program was run for cylinders of small non-dimensional
radius A, the results were close to those given by the linear theory. We then use
the secant method to search for the depths H at which the computed force on the
leading body vanishes. The results for H as a function of L are in approximately
4-figure agreement with the linear theory at A = 0.01, and still in better than 2-figure
agreement at A = 0.1. Thus for all A 6 0.1, the (dashed) curve labeled ‘A = 0 (exact)’
of figure 1 was reproduced to within plotting accuracy by the nonlinear computations.
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Figure 2. Same as figure 1, but for zero force on the trailing cylinder.

At higher values of A, some differences appear. Large cylinders make large waves,
and the rate of increase in wavemaking (at fixed depth) is greater than the rate at
which the thrust due to local overpressure increases with the size of the cylinders.
Hence larger cylinders need to be submerged deeper in order to cancel the force on
the leading cylinder. Figure 1 shows the required depths for various A values.

Note that the nonlinear computations are incomplete. For example, gaps in the
curve for A = 1 are indications that the program has failed to converge because of
the large amplitude of the waves produced. These waves may indeed have become
so steep that there may not even exist solutions in some parameter ranges, the waves
having broken at their crests in practice. For the most nonlinear case so far examined,
namely A = 2, the parameter range where solutions are found is so narrow that on
the scale of figure 1, it appears as just a very short line segment near L = 6, but
nevertheless contains useful results.

Meanwhile, the program also confirms for small cylinders the set of non-dimensional
separations L = π, 3π, . . . that cancel the near-linear waves made by the combination.
For larger cylinders, there is no guarantee that exact wave cancellation occurs, since
there is no superposition principle for the nonlinear waves then produced. However,
to the accuracy of our computations, it does appear that there exists a discrete set of
separations yielding exactly zero downstream wave amplitude and hence exactly zero
wave drag on the combination. The flow at these separations appears to be fore-aft
symmetric, which is indirect confirmation that even in the fully nonlinear case there
are flows without waves far downstream.

The wave-cancelling separation values of L now depend on H as well as A,
whereas in the linear theory they are independent of both. Because the corresponding
total drag is non-negative, a parameter search for its near-zero minima is a difficult
numerical task. Instead, it is somewhat more convenient to proceed indirectly, as
follows. Figure 2, like figure 1, contains graphs of depth H versus separation L for
various fixed values of cylinder radius A, but now these are depths at which the force
on the trailing rather than the leading cylinder vanishes. Configurations with zero
force on either cylinder separately are easier to obtain than those for zero total force,
since they involve zero-crossings rather than zero minima. Again the results for small
radius A agree with the linear theory. Again, for large A, the nonlinear curves are
incomplete, but some low-wave results are obtained even for A as high as 2.
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Figure 3. Combination of curves of figures 1 and 2, in the range of the principal mode n = 0.
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Figure 4. Free-surface waves behind cylinders with A = 1, for L = 4.1, 4.27, 4.37, 4.46 and 4.7, all
such that there is zero force on the leading cylinder.

For any given cylinder radius A, a configuration with zero force on both cylinders
(and hence necessarily with no waves) would be obtained wherever the curves of
figures 1 and 2 meet. In the linear theory, these curves touch exactly at L = π, 3π, . . . ,
as expected. The nonlinear program indicates that the curves still appear to touch
each other, but at larger values of L, which depend on the radius A.

In particular, figure 3 shows an expanded view of a combination of the curves of
figures 1 and 2, in the neighbourhood of the principal mode n = 0 where L = π
in linear theory. On the scale of this figure, touching of these two curves appears
to occur up to A = 1, and also at A = 2, even though for that radius only a very
narrow range of separations from L = 6.000 to L = 6.095 allows convergence of our
computer program, and the two ‘curves’ are indistinguishable short line segments.
The depths and separations required for zero force on both cylinders both increase
quite dramatically with nonlinearity, almost doubling the linear values at A = 2, but
their ratio stays almost constant at about 0.75 for the n = 0 mode.

Figure 4 is a sample of free-surface shapes for cylinders with A = 1. The curves are
for a narrow range of values of L as in figure 3, centred about the principal zero-force
configuration. At each value of L, the depth H has been chosen as in figure 1 so
that there is zero force on the leading cylinder. The least wave amplitude (and hence
the least force on the combination) appears to occur at L = 4.369 with H = 3.254.
This minimum force is essentially zero to within the order of error of our program,
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Figure 5. Free surface near cylinders with A = 2, L = 6.06 and H = 4.51.

typically say 10−7 for the drag coefficient CD defined in equation (12), which takes
values of the order of unity otherwise.

In figure 4, note the nonlinearity, with sharp crests and broad troughs, of the
highest waves shown, at L = 4.1 and L = 4.7. The rapid growth of these waves as L
departs from the near-zero wave state is a signal for eventual failure of our program
to converge, and likely non-existence of non-breaking solutions.

It is also notable in figure 4 that the waves for L = 4.27 and L = 4.46 are almost
out of phase with each other, indicating that a zero-wave state is likely somewhere
between them. Indeed, it is possible to find such zero-wave solutions for every value
of L by suitable adjustment of H . The point of the present study is that within this
family is a unique member having an essentially zero value for the force on each
cylinder separately, and that member has L = 4.369, H = 3.254 at A = 1.

Similarly, for the even larger cylinders with A = 2, the zero-force member has
L = 6.06, H = 4.51. Figure 5 indicates the free surface near the cylinders for that
member. The flow appears to be fore-aft symmetric. Note the large trough between
the cylinders, which has a depth that is more than double the height at which
stagnation of the flow would occur. This tandem cylinder configuration is already
quite a large local free-surface disturber, but nevertheless, one which leaves no trailing
wave pattern far downstream, and has zero horizontal force on each cylinder.
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